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Abstract

This paper provides an account of how learn-
ing of (and coordination on) perceptual mean-
ing can be initialised by partial definitions
given in interaction, assuming that the words
used in the definition themselves have percep-
tual meanings. In brief, the idea is that defini-
tions provide a structure (a Naive Bayes clas-
sifier) connecting the defined concept with the
concepts used in the definition. We formalise
this account in Probabilistic Type Theory with
Records, ProbTTR.

1 Introduction

Human first language learners typically learn from
demonstrations, where a word becomes associated
with a perceptual stimuli. This kind of semantic
learning can be modeled as training a perceptual
classifier on new perceptually available examples
(Larsson, 2015, 2020). However, it also seems clear
that at least adult humans can learn tentative new
meanings, including perceptual meanings, from
verbal descriptions.

This paper explores how learning of perceptual
meaning can be initialised by partial definitions
given in interaction, provided that the words used
in the definition themselves have known percep-
tual meanings. In brief, the idea is that definitions
provide hints on a structure (here, a Naive Bayes
classifier) connecting the defined concept with the
concepts used in the definition. The defined con-
cept is an unobserved variable (for a classifier, the
class variable), and the concepts used in the defini-
tion are evidence variables.

Semantic coordination, the process of interac-
tively agreeing on the meanings of words and ex-
pressions, can be regarded as a process of recipro-
cal learning, where agents learn from each other.
Semantic coordination can happen tacitly as a side-
effect of dialogue interaction, or through more or

less explicit discussion and negotiation of meanings
of words and expressions – sometimes referred to
as Word Meaning Negotiations (WMNs) (Myren-
dal, 2015; Noble et al., 2021).

An account of probabilistic inference and clas-
sification in ProbTTR is introduced in Larsson
and Cooper (2021), where it is also demonstrated
how probabilistic classification of perceptual evi-
dence can be combined with probabilistic reason-
ing. Building on Larsson and Cooper (2021), Lars-
son et al. (2021) propose a probabilistic account of
semantic learning from interaction formulated in
terms of a Probabilistic Type Theory with Records
(ProbTTR) (Cooper et al., 2014, 2015). Starting
from a probabilistic type theoretic formulations of
naive Bayes classifiers, the account of semantic
learning is illustrated with a simple language game
(the fruit recognition game).

In the following, we will connect these strands
of work in an attempt to provide a formal account
of the role of definitions in semantic coordination,
and in particular for perceptual meanings. We first
provide a brief overview of TTR and ProbTTR.
We go on to review earlier work on probabilistic
classification and learning from interaction using
ProbTTR. Section 3 follows Larsson and Myrendal
(2017) in relating dialogue acts involved in WMNs
to semantic updates on an abstract level. The main
contribution of this paper is Section 4, which ex-
plores the idea that the the dependency structure of
Bayesian classifiers can be derived (learned) from
definitions, and that one effect of a definition can
be to update the structure of a Bayesian classifier.
We provide examples of several ways in which this
can happen in the context of a simple language
game, the fruit fetching game. We end the paper
with conclusions and future work.
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
`1 = a1
`2 = a2
. . .
`n = an
. . .

 :

 `1 : T1

`2 : T2(l1)
. . .
`n : Tn(`1, l2, . . . , ln−1)


Figure 1: Schema of record and record type ref = obj123

cman = prfman
crun = prfrun

:

 ref : Ind
cman : man(ref)
crun : run(ref)


Figure 2: Sample record and record type

2 Background

This section reviews the background needed to fol-
low the rest of the paper: TTR, Probabilistic TTR
fundamentals, and Bayes nets and Naive Bayes
classifiers.

2.1 TTR: A brief introduction
We will be formulating our account in a Type The-
ory with Records (TTR). We can here only give
a brief and partial introduction to TTR; see also
Cooper (2005) and Cooper (2012). To begin with,
s : T is a judgment that some s is of type T . One
basic type in TTR is Ind, the type of an individual;
another basic type is Real, the type of real numbers.

Next, we introduce records and record
types. If a1 : T1, a2 : T2(a1), . . . , an :
Tn(a1, a2, . . . , an−1), where T (a1, . . . , an) rep-
resents a type T which depends on the objects
a1, . . . , an, the record to the left in Figure 1 is of
the record type to the right.

In Figure 1, `1, . . . `n are labels which can be
used elsewhere to refer to the values associated
with them. A sample record and record type is
shown in Figure 2.

Types constructed with predicates may be depen-
dent. This is represented by the fact that arguments
to the predicate may be represented by labels used
on the left of the ‘:’ elsewhere in the record type.
In Figure 2, the type of cman is dependent on ref (as
is crun).

If r is a record and ` is a label in r, we can use a
path r.` to refer to the value of ` in r. Similarly, if
T is a record type and ` is a label in T , T .` refers
to the type of ` in T . Records (and record types)
can be nested, so that the value of a label is itself a
record (or record type). As can be seen in Figure
2, types can be constructed from predicates, e.g.,
“run” or “man”. Such types are called ptypes and
correspond roughly to propositions in first order

logic.

2.2 Probabilistic TTR fundamentals

In ProbTTR (as in TTR generally), situations are
understood in a sense similar to that of Barwise
and Perry (1983). It is also assumed that agents can
individuate situations, and that they have a way of
judging situations to be of situation types.

The core of ProbTTR is the notion of a proba-
bilistic judgement, where a situation s is judged to
be of a type T with some probability.

(1) p(s : T ) = r, where r ∈ [0,1]

Such a judgement expresses a subjective prob-
ability in that it encodes an agent’s take on the
likelihood that a situation is of that type.

A probabilistic Austinian proposition is an ob-
ject (a record) that corresponds to, or encodes, a
probabilistic judgement. Probabilistic Austinian
propositions are records of the type in (2).

(2)

 sit : Sit
sit-type : Type
prob : [0,1]


A probabilistic Austinian proposition ϕ of this type
corresponds to the judgement that ϕ.sit is of type
ϕ.sit-type with probability ϕ.prob.

(3) p(ϕ.sit:ϕ.sit-type)= ϕ.prob

We assume that agents track observed situations
and their types, modelled as probabilistic Austinian
propositions.

We use p(T1||T2) to represent the probability
that an agent assigns to some situation s being
of type T1, given that s is of type T2. Note that
p(T1||T2), the conditional probability for some s of
s : T1 given that s : T2, is different from p(T1|T2),
the probability of there being something of type
T1 given that there is something of type T2. We
refer to the former as the bound variable condi-
tional probability, and the latter as the existential
conditional probability.

Larsson and Cooper (2021) introduce a type the-
oretic counterpart of a random variable in Bayesian
inference. To represent a single (discrete) ran-
dom variable with a range of possible (mutually
exclusive) values, ProbTTR uses a variable type
V whose range is a set of value types R(V ) =
{A1, . . . , An}which are all (mutually disjoint) sub-
types of V (Aj v V for 1 ≤ j ≤ n).
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Figure 3: Evidence and Class in a Naive Bayes classi-
fier

2.3 Bayesian nets and the Naive Bayes
classifier

A Bayesian Network is a Directed Acyclic Graph
(DAG). The nodes of the DAG are random vari-
ables, each of whose values is the probability of
one of the set of possible states that the variable
denotes. Its directed edges express dependency re-
lations among the variables. When the values of
all the variables are specified, the graph describes
a complete joint probability distribution (JPD) for
its random variables. Bayesian Networks provide
graphical models for probabilistic learning and in-
ference (Pearl (1990); Halpern (2003)).

A standard Naive Bayes model is a special
case of a Bayesian network. More precisely, it
is a Bayesian network with a single class vari-
able C that influences a set of evidence variables
E1, . . . , En (the evidence), which do not depend
on each other. Figure 2 illustrates the relation be-
tween evidence types and class types in a Naive
Bayes classifier.

A Naive Bayes classifier computes the marginal
probability of a class, given the evidence:

(4)

p(c) =
∑

e1,...,en

p(c | e1, . . . , en)p(e1) . . . p(en)

where c is the value of C, ei is the value of Ei
(1 ≤ i ≤ n) and

(5) p(c | e1, . . . , en) =

p(c)p(e1 | c) . . . p(en | c)∑
C=c′ p(c

′)p(e1 | c′) . . . p(en | c′)

2.4 A ProbTTR Naive Bayes classifier

Corresponding to the evidence, class variables, and
their value types, we associate with a ProbTTR
Naive Bayes classifier κ:

(6) a. a collection of n evidence variable types
Eκ1 , . . . ,Eκn

b. n associated sets of evidence value types
R(Eκ1), . . . ,R(Eκn)

c. a class variable type Cκ, e.g. Fruit, and

d. an associated set of class value types
R(Cκ)

We can encode this as a TTR record as seen in
Figure 4. (The function lbl takes a type T and
returns a label unique to T .)

To classify a situation s using a classifier κ, the
evidence is acquired by observing and classifying
s with respect to the evidence types. Larsson and
Cooper (2021) define a ProbTTR Bayes classifier
κ as a function from a situation s (of the meet
type1 of the evidence variable types Eκ1 , . . . ,Eκn)
to a set of probabilistic Austinian propositions that
define a probability distribution over the values of
the class variable type Cκ, given probability dis-
tributions over the values of each evidence vari-
able type Eκ1 , . . . ,Eκn. Formally, a ProbTTR Naive-
Bayes classifier is a function

(7) κ : Eκ1 ∧ . . . ∧ Eκn →

Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if s : Eκ1 ∧ . . . ∧ Eκn, then

(8) κ(s)={

sit = s
sit-type = C
prob = pκ(s : C)

 | C ∈ R(Cκ)}

2.5 Semantic classification in the fruit
recognition game

Larsson and Cooper (2021) illustrate semantic
classification using a Naive Bayes classifier in
ProbTTR using the fruit recognition game. In this
game a teacher shows fruits to a learning agent.
The agent makes a guess, the teacher provides the
correct answer, and the agent learns from these
observations.

We use short-hands Apple and Pear for the types
corresponding to an object being an apple or a pear,
respectively2. Furthermore, we will assume that

1An object a is of the meet type of T1 and T2, a : T1 ∧ T2,
iff a : T1 and a : T2.

2For details, see Larsson and Cooper (2021).
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υ(κ) =



cvar = Cκ
cvals = R(Cκ)
evars = {Eκ1 , . . . ,Eκn}

evals = {

 lbl(Eκ1 ) = R(Eκ1)
. . .
lbl(Eκn) = R(Eκn)




Figure 4: Variables and values associated with a Naive Bayes classifier κ

υ(FruitC) =


cvar = Fruit
cval = {Apple, Pear}
evars = {Col, Shp}

evals = {
[

lbl(Col) = {Red,Green}
lbl(Shp) = {AShape,PShape}

]


Figure 5: Variables and values associated with a Naive Bayes fruit classifier FruitC

the objects in the Apple Recognition Game have
one of two shapes (a-shape or p-shape, correspond-
ing to types Ashape and Pshape) and one of two
colours (green or red, corresponding to types Green
and Red).

The class variable type is Fruit, with value
types R(Fruit) = {Apple,Pear}. The evidence
variable types are (i) Col(our), with value types
R(Col) = {Green,Red}, and (ii) Shape, with
value types R(Shape) = {Ashape,Pshape}.

For a situation s the classifier FruitC(s) returns
a probability distribution over the value types in
R(Fruit).

(9) FruitC(s) =

{

sit = s
sit-type = F
prob = pFruitC(s : F )

 | F ∈ R(Fruit)}

We follow Larsson and Cooper (2021) in show-
ing how semantic classification (i.e., estimating
a probability distribution over class value types)
works under the assumption that we can com-
pute conditional probabilities p(Cj ||E1 . . . En) of
a class value types Cj given evidence value types
E1 . . . En.

In general, for Cj ∈ R(Cκ), we have

(10) pκ(s : Cj) =∑
E1∈R(Eκ1 )

...
En∈R(Eκn)

p̂κ(Cj ||E1 . . . En)p(s : E1) . . . p(s : En)

Correspondingly, in the fruit recognition game, for
each F ∈ R(Fruit) we have

(11) p̂FruitC(s : F ) =∑
L∈R(Col)
S∈R(Shape)

pFruitC(F ||L ∧ S)p(s : L)p(s : S)

Larsson (2015) shows how perceptual classifica-
tion can be modelled in TTR, and Larsson (2020)
reformulates and extends this formalisation to prob-
abilistic classification. Larsson and Cooper (2021)
suggests regarding the non-conditional probabili-
ties (e.g. p(s : L) and p(s : S) above) as result-
ing from probabilistic classification of real-valued
(non-symbolic) visual input, where a classifier as-
signs to each image a probability that the image
shows a situation of the respective type. Such a
classifier can be implemented in a number of dif-
ferent ways, e.g. as a neural network, as long as
it outputs a probability distribution. The training
of perceptual classifiers are outside the scope of
this paper, but see Larsson (2013); Fernández and
Larsson (2014).

2.6 Semantic learning
For the model of semantic classification that uses
conditional probabilities, a central question is of
course how to estimate conditional probabilities,
of the form p(C||E1 ∧ . . . ∧ En) (where C ∈
R(C), Ei ∈ R(Ei), 1 ≤ i ≤ n). Using Bayes
rule and marginalising over the class value types,
we get for a Naive Bayes classifier:

(12) p̂κ(C||E1 ∧ . . . ∧ En) =

p(C)p(E1||C) . . . p(En||C)∑
C′∈R(Cκ) p(C

′)p(E1||C ′) . . . p(En||C ′)
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For all combinations of evidence value types
E1, . . . , En and class value types C, we need (a)
the conditional probability of the evidence value
types given the class value type, p(Ei||C), and (b)
the prior of the class value type, p(C ′).

We compute likelihoods and probabilities as ra-
tio of the frequencies of occurrences, summed over
all judgements in the history:

(13)

p(Ei||C) =
∑

j∈J,j.sit=s p(s : C)p(s : Ei)∑
j∈J,j.sit=s p(s : C)

The formula (13) tells us that we can consider
probabilities in the history of judgements as frac-
tions of events; and this is justified by interpreting
them as fractions of language-community speakers
making the corresponding categorical judgement.
In this sense, we are providing a frequentist inter-
pretation of epistemic probability. (For the full
account and motivation, see [paper under review].)

In addition to conditional probabilities, (12) re-
quires the prior probabilities of the class value types
C ∈ R(C). We use pJ(T ) to denote the prior prob-
ability that an arbitrary situation is of type T given
J.

(14)

pJ(T ) =

∑
j∈JT j.prob

P(J)
if P(J) > 0, otherwise 0

where P(J) is the cardinality of situations in J, i.e.
the total number of situations in J.

(15) P(J) = |{s|∃j ∈ J, j.sit = s}|

We can encode the relevant conditional probabil-
ities and priors as a TTR record π(κ), as seen in
Figure 6. Accordingly, we replace (12) with (16):

(16) p̂κ(C||E1 ∧ . . . ∧ En) =

pκJ(C)p
κ(E1||C) . . . pκ(En||C)∑

C′∈R(Cκ) p
κ
J(C

′)pκ(E1||C ′) . . . pκ(En||C ′)

where

pκ(E||C) = π(κ).condps.lbl(C).lbl(E)

pκJ(C) = π(κ).priors.lbl(C)

What this buys us is the possibility of updating
classifiers by manipulating records encoding them.
In Section 4, we will exploit this in formulating
semantic updates resulting from word meaning ne-
gotiations.

3 Word Meaning Negotiation and
semantic updates

In Myrendal (2015, 2019), a taxonomy for dialogue
acts involved in WMNs of so-called trigger words
T in online discussion forum communication is
presented. Two central dialogue acts are:

• Explicification: Provides an explicit (partial
or complete) definition of T . We will here
refer to this as simply definition.

• Exemplification: Providing examples of what
the trigger word can mean, or usually means.

To describe the effects of these dialogue acts
(once they are grounded), Larsson and Myrendal
(2017) propose an abstract formalism for concep-
tual updates, where we assume that a definition D
of a word (or expression) T has been provided, or
an example situation E. D or E is then used for
updating the meaning in question.

• δ(T , D): T updated with D as a partial defi-
nition of T

• ε(T , E): T updated with E as an example of
a situation described by T

The abstract meaning update functions3 serve
as a sort of API between dialogue acts and their
consequent meaning updates. We can see the learn-
ing from examples described above in Section 2.6
as part of the specification of ε(T, E). While we
leave the exact formulation for future work, updat-
ing with an example E in the frequentist learning
paradigm amounts to (1) adding example E to J,
(2) recomputing the conditional probabilities and
priors based on the updated J, and (3) updating the
probabilities and priors in the classifier record. If
we assume that P ′ is a record like the one shown
in Figure 7 but with updated values based on J
updated with E, step (3) could be formalised thus
(taking FruitR to be the union4 of the records in
Figures 5 and 7, so FruitR=υ(FruitC)∪π(FruitC)):

(17) FruitR
′
=FruitR[P

′
]

Simplifying somewhat, if r1 and r2 are records,
then r1[r2] is the union of r1 and r2 except that if
a label ` occurs in both r1 and r2, the value of ` in
r1[r2] will be r2.`. See Cooper (in prep) for details.

3We ignore the polarity of the updates here; in general,
definitions and examples can be positive or negative.

4Records are labelled sets.
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π(κ)=



condps =


lbl(C1) =

 lbl(E1) = p(E1||C1)
. . .
lbl(Ev) = p(Ev||C1)


. . .

lbl(Cw) =

 lbl(E1) = p(E1||Cw)
. . .
lbl(Ev) = p(Ev||Cw)




priors =

 lbl(C1) = pJ(C1)
. . .
lbl(Cw) = pJ(Cw)




Figure 6: Record containing conditional probabilities and priors for a classifier κ, where for 1 ≤ u ≤ v,Eu ∈
R(Eκ1 ) ∪ . . . ∪R(Eκn), and where for 1 ≤ u ≤ w,Cu ∈ R(Cκ)

π(FruitC) =


condps =

 lbl(Apple) =

 lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]


Figure 7: Parts of record containing conditional probabilities and priors for the fruit classifier

4 Learning perceptual meanings from
definitions

The work reviewed above showed how probabilis-
tic classifiers can be trained from examples pre-
sented in interaction. However, this cannot be the
whole story. Indeed, in terms of the dialogue acts
for semantic coordination presented in Larsson and
Myrendal (2017), we have only covered exemplifi-
cation. What about partial definitions (explicifica-
tions)? What effect do they have on agent’s takes
on meanings, and how is learning from definitions
related to learning from examples?

From the perspective of agents learning how to
classify situations probabilistically, one might ask
how agents learn the structure of the Bayes net (or
as a special case, Naive Bayes classifier) used to
classify situations. We propose to connect these
two questions, by exploring the idea that the the
dependency structure of Bayesian classifiers can be
derived (learned) from definitions, and that one ef-
fect of a definition can be to update the structure of
a Bayesian classifier. (We are not claiming that this
is the only way agents can learn such structures.)

In the fruit recognition game, B learns how to
take shape (a-shape or p-shape) and colour (red or
green) into account when classifying apples and
pears, by adjusting conditional probabilities and
priors. Before going into learning new meanings
from definitions, it might be helpful to show how
learning new meanings from examples (demonstra-
tions) could be accounted for.

4.1 Learning a new meaning from example
In Larsson and Cooper (2009), it is shown how
ontological meaning (e.g. that kumqat is a type of
fruit) can be learned from interaction, and how
such learning can be modelled in TTR. We can
imagine a version of the fruit recognition game
where new fruits (i.e., new value types for the fruit
variable type) are introduced by demonstration:

A: What fruit is this?
B: A pear.
A: Wrong, it’s a Wax Jambu.
B: Okay.

In this example, B can learn both that Wax Jam-
bus are fruits, and what they look like based on
being provided with an example Wax Jambu that
they can observe. From the context, B can fig-
ure out that Wax Jambus are fruits. In the general
case such an inference can be based on a variety of
factors, including the ongoing activity and linguis-
tic evidence. In terms of a probabilistic classifier,
learning this amounts to adding a new value (type)
to the Fruit variable (type). This update can be
formalised thus:

(18) FruitR
′
=FruitR[

[
cvals = F .cvals∪{C}

]
]

Furthermore, B could add the new example to J
and update the conditional probabilities, as detailed
above.

In the following, we will see how B can instead
learn from partial definitions, which do not provide
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perceptually available evidence but do seem to offer
help in guiding B’s learning of the structure of the
classifier, as well as associated probabilities.

4.2 Learning a new meaning from definition
We can imagine another language game where A
asks B to fetch different fruits in a fruit storage,
where several types are fruits are available, some
of them unknown to B:

A: Get me an apple please
B: (fetches apple) there you go
A: Thanks. Now get me a Wax Jambu!
B: A Wax Jambu?
A: They are pear-shaped and red.

We can call this the fruit fetching game. Let’s
assume that our learning agent B from A’s second
utterance learns that Wax Jambus are fruits. How-
ever, B has not been presented with an example
fruit to use for training. In this sense B does not
yet know what Wax Jambus look like. It seems
plausible that B in this case might be able to use
A’s definition of Wax Jambu to distinguish Wax
Jambus from other fruits (even if this ability will
not be as developed as it might later be after seeing
several Wax Jambus).

How, then, could we model the effects of A’s
definition, which (with pronoun resolved) can be
paraphrased as “Wax Jambus are pear-shaped and
red”? Firstly, by adding a value type WaxJambu to
the fruit classifier:

(19) FruitR
′
=FruitR[[

cvals = FruitR.cvals ∪ {WaxJambu}
]
]

Secondly, by recomputing probabilities, as-
signing high values to p(Pshape||WaxJambu) and
p(Red||WaxJambu), and lowering other probabili-
ties accordingly. For simplicity, we assume here
that the high values are 1 and that conditional prob-
abilities for other values of the same variables are
lowered to 0.

(20) FruitR
′′
=FruitR

′
[condps=

lbl(WaxJambu)=

lbl(PShape) = 1.0
lbl(AShape) = 0.0
lbl(Red) = 1.0
lbl(Green) = 0.0



 ]

Hence, the ProbTTR implementation of the
δ+(T,D) function should be such that δ+(JWax
JambuK,Jpear-shaped and redK) results in these up-
dates.

Equipped with the updated mental fruit classifier,
B now goes off to fetch a Wax Jambu in a storage
room, despite never having seen one. One way of
finding the right type of fruit in the storage is to
simply going through the fruits in storage one by
one and classify them, until one is classified as the
sought type (here, Wax Jambu)5.

4.3 Learning new evidence values
Above, A’s definition only included evidence
values that were already used in the fruit classifier.
However, A may also introduce a unknown value
previously unknown to B:

A: Get me a Mango please!
B: A Mango?
A: They have an oblong shape.

In this case, B needs to both add the new class
value Mango and a new evidence value Oblong (for
the variable Shp):

(21) FruitR
′
=FruitR[[

values = FruitR.cvals ∪ {Mango}
]
]

(22) FruitR
′′
=FruitR

′
[[

evals =
[

lbl(Shp) =FruitR.evals.lbl(Shp)
∪ {Oblong}

]]
]

Finally, as before, the conditional probabilities are
shifted to favour the evidence variable given in the
definition:

(23) FruitR
′′′

=FruitR
′′
[condps=

lbl(Mango) =

lbl(PShape) = 0.0
lbl(AShape) = 0.0
lbl(Oblong) = 1.0

 ]

We assume here that B was familiar with the
shape value type Oblong, but had not previously
considered it relevant to fruit classification6A more
complicated situation arises when a previously un-
known value for a known variable is introduced, e.g.
a new shape. In such cases, perceptually available

5One can imagine a continuation of the game, where
B shows the retrieved fruit to A and receives feedback on
whether it was right kind of fruit or not, and trains on this
example in the normal way.

6An agent may know a very high number of shapes but
not all of them will be relevant to classifying fruits. For
such reasons, one might consider separating a general shape
classifier (if such a thing is ever needed) from a classifier-
specific one (in this case, specific to the fruit classifier). In
general, even many many evidence types are of a general
character (e.g. shape, colour and size), generic classifiers may
be of less use than evidence classifiers that are adapted to
specific tasks.
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examples may be necessary to train the updated
classifier on.

4.4 Learning new evidence variables

Finally, a definition may introduce a new evidence
variable, along with a value:

A: Get me a Kumqat!
B: A Kumqat?
A: They are small

We assume that B is already has a Size classi-
fier and knows that Small is a Size (along with,
say, MidSize and Large). Given this, the resulting
updates to B’s fruit classifier could be described
thus:

(24) FruitR
′
=FruitR[[

values = FruitR.cvals ∪ {Kumqat}
]
]

(25) FruitR
′′
=FruitR‘′[[

evars = FruitR.evars ∪ {Size}
]
]

(26) FruitR
′′′

=FruitR
′′
[[

evals =
[
lbl(Size) = {Large,MidSize, Small}

]]
]

(27) FruitR
′′′′

=FruitR
′′′

[condps=

lbl(Kumqat) =

lbl(Small) = 1.0
lbl(Large) = 0.0
lbl(Midsize) = 0.0

 ]

This example also raises the question about par-
tial definitions that only mention a value of one
of the evidence variables. What should the con-
ditional probabilities for a situation being of the
value types for the other evidence variable types
(not mentioned in the definition) given that the sit-
uation is of the new class value type? For now, we
note that several options are available - assuming
uniform distributions, or asking for more informa-
tion (“What colour is a Kumqat? What shape?”)
and use the response to infer new conditional prob-
abilities.

5 Definitions vs. examples

If we want to model how meanings are affected by
both definitions and examples, we will need to say
something about the trade-off between definitions
and examples. For example, while a definition may
be useful until examples have been observed, at
some point the observed examples may override
a definition. In the proposed account, definitions
affect conditional probabilities only in the short

run. Assuming conditional probabilities are recom-
puted when receiving new relevant observations,
the probabilities resulting from proposed defini-
tions (e.g. in the fruit fetching game) will be over-
written as soon as an observation of an instance
of the defined concept has been made (an actual
fruit of the defined type has been observed). This
is perhaps not obviously wrong – it is at least theo-
retically possible that definitions are categorically
superseded by observations – but a more flexible
trade-off between definitions and examples (obser-
vations) would probably be desirable. There are
ways of achieving this in the frequentist approach,
e.g. by letting a definition lead to adding some
relatively high number N of “fake” observations in
line with the definition to J. By manipulation of N ,
the relative importance of definitions relative to ob-
servations can be regulated. If such approaches are
deemed unsatisfying for theoretical or empirical
reasons, it may be necessary to move to a different
learning method. Future work thus includes work-
ing out alternative learning approaches that can
better account for the trade-off between definitions
and examples.

6 Conclusion

We have shown how (partial) definitions offered
in word meaning negotiations can help learners
structure probabilistic classifiers that are used to
compute probabilistic semantic judgements. Tech-
nically, this was achieved by encoding a Naive
Bayes classifier as a TTR record structure which
can updated by definitions. Beyond what has been
mentioned above, future work includes parsing nat-
ural language into an appropriate representation for
updating classifiers, formulating a general update
rule for carrying out such updates (of which several
examples were given above), and generalising the
account to Bayes nets (and other types of proba-
bilistic classifiers). We also want to study actual
definitions from human-human dialogues, rather
than invented ones.
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