

Conflict Search Graph for Common Ground Consistency checks in Dialogue Systems

1,2 Maria Di Maro, 2,3 Antonio Origlia, 2,3 Francesco Cutugno ¹Interdepartmental Center UrbanEco, ²Interdepartmental Center for Advances in Robotic Surgery ³Department of Electrical Engineering and Information Technology. University of Naples "Federico II",

Definitions

Common Ground Inconsistencies

the incompatibility between the listener belief and the new evidence provided by the speaker.

Communal Common Ground [CCG]

The amount of information shared with people that belong to the same community [1].

Personal Common Ground [PCG]

The amount of information collected over time through communicative exchanges with an interlocutor [1].

The domain D is defined as a set of frames F corresponding to the set of sequential actions $A \in T_{task}$

Each $a_i \in A$ is associated with a set of states S_i (pre-conditions s_pre or post-conditions s_post)

Conflicts arise when:

- i) s_pre is incompatible with the rules of the CCG.
- ii) s_pre is incompatible with the current a, as it cannot co-exist with the s_post resulting from a preceding a, saved in the PCG.

Architecture

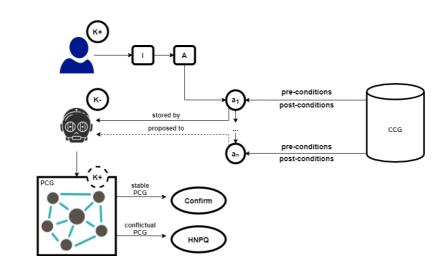


Fig. 1. Model of the system applying inconsistencies recovery strategies to the dialogue, i.e., High Negation Polar Questions (HNPQ) as a Clarification strategy.

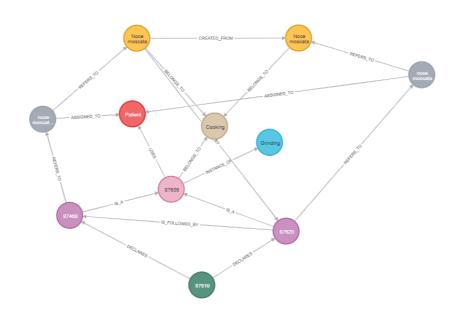


Fig. 2. Conflict Representation in the PCG.

Conflict Detection

The Conflict Search Graph is a Neo4j-based [2]) graph $D = \langle V, E \rangle$

E are defined as functions between $v_1, v_2 \in V$.

$$stable(PCG) \implies \forall a_i \in A, \forall a_j \in A | j < i \land pre(a_i, p) \land post(a_j, p)$$

$$conflict(PCG) \implies \exists a_i \in A, \exists a_j \in A | j < i \land pre(a_i, p) \land post(a_j, \neg p)$$

A new candidate action to be included in

the CG can be defined as the following tuple $X = \langle a_n \rangle, \langle \bar{N}, \bar{E} \rangle$

where a_n is a new action, \bar{N} is a set of named en-

tities, \bar{E} is a set of new edges. At any time t, G_t represents the CG configuration at time t. Updating G by accepting X means creating a new graph $G' = \langle V', E' \rangle$ where $V' = V \cup a_n \cup \bar{N}$ and $E' = E \cup \bar{E}$. G', can be accepted only if G' is stable, so $G_{t+1} = G'$ if stable(g') else G

With the use of specific queries on a set of 20 different recipes, the graph detected 85% of the conflicts.

References

- [1] Eve V. Clark. 2015. *Common ground*. The Hand-book of Language Emergence, page 328–353. Wiley, Chichester, UK.
- [2] Jim Webber. 2012. A programmatic introduction to neo4j. InProceedings of the 3rd annual conferenceon Systems, programming, and applications: soft-ware for humanity, pages 217–218.