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Introduction

Introduction

I Questions
I How is linguistic meaning related to perception?
I How do we learn and agree on the meanings of our words?

I We are developing a formal judgement-based semantics where notions
such as perception, classification, judgement, learning and dialogue
coordination play a central role

I See e.g. Cooper (2005), Cooper and Larsson (2009), Larsson (2011),

Dobnik et al. (2011), Cooper (2012a), Dobnik and Cooper (2013),

Larsson (2015), Cooper et al. (2015b), Larsson (2020), Larsson and
Cooper (2021)

I Key ideas:
I modelling perceptual meanings as classifiers of real-valued perceptual

data
I modelling how agents learn and coordinate on meanings through

interaction with other agents (semantic coordination)
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Introduction

Learning from demonstrations and definitions I

I Human first language learners typically learn from demonstrations,
where a word becomes associated with a perceptual stimuli.

I This kind of semantic learning can be modeled as training a
perceptual classifier on new perceptually available examples (Larsson,
2015), (Larsson, 2020).

I However, it also seems clear that at least adult humans can learn
tentative new meanings, including perceptual meanings, from verbal
descriptions.
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Introduction

Learning from demonstrations and definitions II

I This paper explores how learning of perceptual meaning can be
initialised by partial definitions given in interaction, provided that the
words used in the definition themselves have known perceptual
meanings.

I In brief, the idea is that definitions provide hints on a structure (here,
a Naive Bayes classifier) connecting the defined concept with the
concepts used in the definition.

I The defined concept is an unobserved variable (for a classifier, the
class variable), and the concepts used in the definition are evidence
variables.
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Introduction

Classification
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Introduction

Classification is subjective?
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Introduction

Coordination process
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Introduction

Classification is coordinated
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Introduction

Classification is coordinated
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Introduction

Coordination can be creative
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Introduction

Previous work

I An account of probabilistic inference and classification in ProbTTR is
introduced in Larsson and Cooper (2021), where it is also
demonstrated how probabilistic classification of perceptual evidence
can be combined with probabilistic reasoning.

I Building on Larsson and Cooper (2021), Larsson et al. (2021)
propose a probabilistic account of semantic learning from interaction
formulated in terms of a Probabilistic Type Theory with Records
(ProbTTR) (Cooper et al., 2015a).

I Starting from a probabilistic type theoretic formulations of naive
Bayes classifiers, the account of semantic learning is illustrated with a
simple language game (the fruit recognition game).

I Here, we will connect these strands of work in an attempt to provide
a formal account of the role of definitions in semantic coordination,
and in particular for perceptual meanings.
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Background

Type Theory with Records

I We want to use a framework which also encompasses accounts of
many problems traditionally studied in formal semantics1.

I We will be using Type Theory with Records, or TTR
I see Cooper (2012a),Cooper (2012b),Cooper and Ginzburg (2015) and

Cooper (in prep)

I TTR starts from the idea that information and meaning is founded on
our ability to perceive and classify the world.

I Based on the notion of judgements of entities and situations being of
certain types.

1Semantic phenomena which have been described using TTR include modelling of
intensionality and mental attitudes (Cooper, 2005), dynamic generalised quantifiers (
Cooper, 2004), co-predication and dot types in lexical innovation, frame semantics for
temporal reasoning, reasoning in hypothetical contexts (Cooper, 2011), enthymematic
reasoning (Breitholtz and Cooper, 2011), clarification requests (Cooper, 2010), negation
(Cooper and Ginzburg, 2011), and information states in dialogue (Cooper, 1998;
Ginzburg, 2012).
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Background TTR fundamentals

TTR fundamentals I

I a : T is a judgment that a is of type T

I : T is a judgement that there is something of type T
I T is non-empty; often written T true in Martin-Löf type theory
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Background TTR fundamentals

TTR fundamentals II

I Types may be either basic or complex

I Some basic types in TTR:
I Ind, the type of an individual
I Real, the type of real numbers
I [0,1], the type of real numbers between 0 and 1 (such as probabilities)
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Background TTR fundamentals

TTR fundamentals III

I Complex types are structured objects which have types or other
objects introduced in the theory as components

I ptypes are constructed from a predicate and arguments of appropriate
types as specified for the predicate.

I Examples are ‘man(a)’, ‘see(a,b)’ where a, b : Ind.

I The objects or witnesses of ptypes can be thought of as proofs in the
form of situations, states or events in the world which instantiate the
type.
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Background TTR fundamentals

Records and record types

I If
I a1 : T1,
I a2 : T2(a1),
I . . . ,
I an : Tn(a1, a2, . . . , an�1),
I where T (a1, . . . , an) represents a type T which depends on the objects

a1, . . . , an,

I ...the record to the left is of the record type to the right.
`1 = a1
`2 = a2
. . .
`n = an
. . .

 :


`1 : T1

`2 : T2(l1)
. . .
`n : Tn(`1, l2, . . . , ln�1)


I `1, . . . `n are labels which can be used elsewhere to refer to the values

associated with them.
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Background TTR fundamentals

Records and record types

I A sample record and record type: ref = obj123
cman = prf1
crun = prf2

:

 ref : Ind
cman : man(ref)
crun : run(ref)


I The record on the left is of the record type on the right provided

I obj123 : Ind
I prf1 : man(obj123)
I prf2 : run(obj123)

I We will introduce further details of TTR as we need them in
subsequent sections.
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Background Probabilistic TTR fundamentals

Probabilistic TTR fundamentals

I The core of ProbTTR is the notion of probabilistic judgement.
I There are two kinds of judgement corresponding to the two kinds of

judgement in non-probabilistic TTR:

1. p(s : T ) – the probability that a situation, s, is of type, T
2. p(T ) – the probability that there is some witness of type T .

I This introduces a distinction that is not normally made explicit in the
notation used in probability theory.
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Background Probabilistic TTR fundamentals

Probabilistic Austinian propositions

I A probabilistic Austinian proposition is an object (a record) that
corresponds to, or encodes, a probabilistic judgement.

I Probabilistic Austinian propositions are records of the type sit : Sit
sit-type : Type
prob : [0,1]


(where [0, 1] represents the type of real numbers between 0 and 1).

I An object ϕ of the above type corresponds to, or encodes, the
judgement

p(ϕ.sit : ϕ.sit-type) = ϕ.prob
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Background Probabilistic TTR fundamentals

Conditional probabilities in ProbTTR

I We use p(T1jjT2) to represent the probability that any situation s is
of type T1, given that s is of type T2.

I Note that p(T1jjT2), is different from p(T1jT2), the probability of
there being something of type T1 given that there is something of
type T2.
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Background Probabilistic TTR fundamentals

Random variables in TTR I

I Larsson and Cooper (2021) introduce a type theoretic counterpart of
a random variable in Bayesian inference.

I To represent a single (discrete) random variable with a range of
possible (mutually exclusive) values, ProbTTR uses a variable type V
whose range is a set of value types R(V ) = fA1, . . . ,Ang such that
the following conditions hold.

a. Aj v V for 1 � j � n

b. Aj? Ai for all i , j such that 1 � i 6= j � n

c. for any s, p(s : V) 2 f0, 1.0g and p(s : V) =
∑

A2R(V) p(s : A)
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Background Probabilistic TTR fundamentals

Representing probability distributions

I For a situation s, a probability distribution over the m value types
Aj 2 R(A), 1 � j � m belonging to a variable type A can be written
(as above) as a set of probabilistic Austinian propositions, e.g.

f

 sit = s
sit-type = Aj

prob = p(s : Aj)

 j Aj 2 R(A)g
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Background Bayesian nets and the Naive Bayes classifier

Bayesian inference I

I Bayesian Networks provide graphical models for probabilistic learning
and inference (Pearl, 1990, Halpern, 2003).

I A Bayesian Network is a Directed Acyclic Graph (DAG).

I The nodes of the DAG are random variables

I Its directed edges express dependency relations among the variables.

I The graph describes a complete joint probability distribution (JPD)
for its random variables.
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Background Bayesian nets and the Naive Bayes classifier

Naive Bayes classifier I

I A standard Naive Bayes model is a Bayesian network with a single
class variable C that influences a set of evidence variables E1, . . . ,En

(the evidence), which do not depend on each other.

C

E1 E2 ... En
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Background Bayesian nets and the Naive Bayes classifier

Naive Bayes classifier II

I A Naive Bayes classifier computes the marginal probability of a class,
given the evidence:

p(c) =
∑

e1,...,en

p(c j e1, . . . , en)p(e1) . . . p(en)

where c is the value of C , ei is the value of Ei (1 � i � n) and the
conditional probability of the class given the evidence is estimated
thus:

p̂(c j e1, . . . , en) =
p(c)p(e1 j c) . . . p(en j c)∑

C=c 0 p(c 0)p(e1 j c 0) . . . p(en j c 0)

31 / 98



Background A ProbTTR Naive Bayes classifier

Outline
Introduction

Background
TTR fundamentals
Probabilistic TTR fundamentals
Bayesian nets and the Naive Bayes classifier
A ProbTTR Naive Bayes classifier
Semantic classification
Semantic learning

Word Meaning Negotiation and semantic updates

Learning perceptual meanings from definitions
Learning a new meaning from example
Learning a new meaning from definition
Learning new evidence values
Learning new evidence variables

Definitions vs. examples

Conclusions & future work
32 / 98



Background A ProbTTR Naive Bayes classifier

A ProbTTR Naive Bayes classifier I

I Corresponding to the evidence, class variables, and their values, we
associate with a ProbTTR Naive Bayes classifier κ

a. a collection of evidence variable types Eκ
1 , . . . ,Eκ

n ,

b. associated sets of evidence value types R(Eκ
1 ), . . . ,R(Eκ

n ),

c. a class variable type Cκ, and

d. an associated set of class value types R(Cκ).
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Background A ProbTTR Naive Bayes classifier

A ProbTTR Naive Bayes classifier II

I We can encode the variables and values associated with a Naive Bayes
classifier κ as a TTR record:

υ(κ) =


cvar = Cκ

cvals = R(Cκ)
evars = fEκ

1 , . . . ,Eκ
ng

evals = f

 lbl(Eκ
1 ) = R(Eκ

1 )
. . .
lbl(Eκ

n ) = R(Eκ
n )
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Background A ProbTTR Naive Bayes classifier

A ProbTTR Naive Bayes classifier III

I To classify a situation s using a classifier κ, the evidence is acquired
by observing and classifying s with respect to the evidence types.

I Larsson and Cooper (2021) define a ProbTTR Bayes classifier κ as a
function

I from a situation s (of the meet type of the evidence variable types
Eκ
1 , . . . ,Eκ

n )
I to a set of probabilistic Austinian propositions that define a probability

distribution over the values of the class variable type Cκ,
I given probability distributions over the values of each evidence variable

type Eκ
1 , . . . ,Eκ

n .
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Background A ProbTTR Naive Bayes classifier

A ProbTTR Naive Bayes classifier IV
I A ProbTTR Näıve Bayes classifier is a function κ of the type

(Eκ1 ^ . . . ^ Eκn)! Set(

 sit : Sit
sit-type : Type
prob : [0,1]

)

such that if s : Eκ1 ^ . . . ^ Eκn , then

κ(s) = f

 sit = s
sit-type = C
prob = pκ(s : C )

 j C 2 R(Cκ)g

where

pκ(s : C ) =
∑

E12R(Eκ
1 )

...
En2R(Eκ

n )

pκ(C jjE1 ^ . . . ^ En)p(s : E1) . . . p(s : En)
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Background Semantic classification

The fruit recognition game I

I Larsson and Cooper (2021) illustrate semantic classification using a
Naive Bayes classifier in ProbTTR using the fruit recognition game.

I In this game a teacher shows a learning agent fruits (for simplicity, we
assume there are only apples and pears in this instance of the game).

I The agent makes a guess, the teacher provides the correct answer,
and the agent learns from these observations.
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Background Semantic classification

The fruit recognition game II

I We will use shorthand for the types corresponding to an object being
an apple vs. a pear:

I Apple =

[
x : Ind
capple : apple(x)

]
I Pear =

[
x : Ind
cpear : pear(x)

]
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Background Semantic classification

The fruit recognition game III

I Objects in the Fruit Recognition Game have one of two shapes
(a-shape or p-shape) and one of two colours (green or red).

I Ashape =

[
x : Ind
c : ashape(x)

]
I Pshape =

[
x : Ind
c : pshape(x)

]
I Green =

[
x : Ind
c : green(x)

]
I Red =

[
x : Ind
c : red(x)

]
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Background Semantic classification

The fruit recognition game IV

I The class variable type is Fruit, with value types
R(Fruit) = fApple,Pearg.

I The evidence variable types are
I Col(our), with value types R(Col) = fGreen,Redg
I Shape, with value types R(Shape) = fAshape,Pshapeg.

Fruit

Shape Colour
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Background Semantic classification

The fruit recognition game V

I TTR encoding of variables and values associated with the Naive
Bayes fruit classifier FruitC:

υ(FruitC) =


cvar = Fruit
cval = fApple, Pearg
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]


(The function lbl takes a type T and returns a label unique to T )
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Background Semantic classification

Classification in the fruit recognition game

I For a situation s the classifier FruitC(s) returns a probability
distribution over the variable types of Fruit.

FruitC(s) = f

 sit = s
sit-type = F

prob = pFruitCJ (s : F )

 j F 2 R(Fruit)g

43 / 98



Background Semantic classification

Semantic classification using conditional probabilities I

I We follow Larsson and Cooper (2021) in showing how semantic
classification (i.e., estimating a probability distribution over class
value types) works

I In general, for class value types Cj 2 R(Cκ), we have

pκ(s : Cj) =
∑

E12R(Eκ
1 )

...
En2R(Eκ

n )

pκ(Cj jjE1 . . .En)p(s : E1) . . . p(s : En)
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Background Semantic classification

Semantic classification using conditional probabilities II

I Correspondingly, in the fruit recognition game, for each F 2 R(Fruit)
we have

pFruitC(s : F ) =
∑

L2R(Col)
S2R(Shape)

p(F jjL ^ S)p(s : L)p(s : S)
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Background Semantic classification

Semantic classification using conditional probabilities III

I Larsson (2015) shows how perceptual classification can be modelled in
TTR

I Larsson (2020) reformulates and extends this formalisation to
probabilistic classification.

I Larsson and Cooper (2021) suggests regarding the non-conditional
probabilities (e.g. p(s : L) and p(s : S) above) as resulting from
probabilistic classification of real-valued (non-symbolic) visual input...

I ...where a classifier assigns to each image a probability that the image
shows a situation of the respective type.
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Background Semantic classification

Semantic classification using conditional probabilities IV

I Such a classifier can be implemented in a number of different ways,
e.g. as a neural network, as long as it outputs a probability
distribution.

I The training of perceptual classifiers are outside the scope of this
paper, but see Larsson (2013) and Fernández and Larsson (2014).
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Background Semantic learning

Frequentist semantic learning from examples I

I For the model of semantic classification that uses conditional
probabilities, a central question is of course how to estimate
conditional probabilities, of the form

p(C jjE1 ^ . . . ^ En) (where C 2 R(C),Ei 2 R(Ei ), 1 � i � n).

I Using Bayes rule and marginalising over the class value types, we get
for a Naive Bayes classifier:

p̂κ(C jjE1 ^ . . . ^ En) =
p(C )p(E1jjC ) . . . p(EnjjC )∑

C 02R(Cκ) p(C 0)p(E1jjC 0) . . . p(EnjjC 0)
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Background Semantic learning

Frequentist semantic learning from examples II

I For all combinations of evidence value types E1, . . . ,En and class
value types C , we need

(a) the conditional probability of the evidence value types given the class
value type, p(Ei jjC ), and

(b) the prior of the class value type, p(C 0).
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Background Semantic learning

Computing conditional probabilities and priors I

I We compute likelihoods and probabilities as ratio of the frequencies of
occurrences, summed over all judgements in the history:

p(Ei jjC ) =

∑
j2J,j .sit=s p(s : C )p(s : Ei )∑

j2J,j .sit=s p(s : C )

I This can be seen as a frequentist interpretation of epistemic
probability.

I For the full account and motivation, see Larsson et al. (2021).
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Background Semantic learning

Computing conditional probabilities and priors II

I In addition to conditional probabilities, we require the prior
probabilities of the class value types C 2 R(C).

I We use pJ(T ) to denote the prior probability that an arbitrary
situation is of type T given J.

pJ(T ) =

∑
j2JT

j .prob

P(J)
if P(J) > 0, otherwise 0

I where P(J) is the cardinality of situations in J, i.e. the total number
of situations in J.

P(J) = jfsj9j 2 J, j .sit = sgj
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Background Semantic learning

Recording probablities I

We can encode the relevant conditional probabilities and priors as a TTR
record π(κ) containing conditional probabilities and priors for a classifier κ,
where

I for 1 � u � v ,Eu 2 R(Eκ1) [ . . . [R(Eκn), and

I where for 1 � u � w ,Cu 2 R(Cκ)

π(κ)=



condps =


lbl(C1) =

 lbl(E1) = p(E1jjC1)
. . .
lbl(Ev ) = p(Ev jjC1)


. . .

lbl(Cw ) =

 lbl(E1) = p(E1jjCw )
. . .
lbl(Ev ) = p(Ev jjCw )




priors =

 lbl(C1) = pJ(C1)
. . .
lbl(Cw ) = pJ(Cw )
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Background Semantic learning

Recording probablities II

Parts of record containing conditional probabilities and priors for the fruit
classifier:

π(FruitC) =


condps =

 lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]
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Background Semantic learning

Recording probablities III

Accordingly, we replace

p̂κ(C jjE1 ^ . . . ^ En) =
p(C )p(E1jjC ) . . . p(EnjjC )∑

C 02R(Cκ) p(C 0)p(E1jjC 0) . . . p(EnjjC 0)

with

p̂κ(C jjE1 ^ . . . ^ En) =
pκJ(C )pκ(E1jjC ) . . . pκ(EnjjC )∑

C 02R(Cκ) pκJ(C 0)pκ(E1jjC 0) . . . pκ(EnjjC 0)

where

I pκ(E jjC ) = π(κ).condps.lbl(C ).lbl(E )

I pκJ(C ) = π(κ).priors.lbl(C )

55 / 98



Background Semantic learning

Recording probablities IV

I What this buys us is the possibility of updating classifiers by
manipulating records encoding them.

I We will exploit this in formulating semantic updates resulting from
word meaning negotiations.
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates I

I In Myrendal (2015) and Myrendal (2019), a taxonomy for dialogue
acts involved in WMNs of so-called trigger words T in online
discussion forum communication is presented.

I Two central dialogue acts are:
I Explicification: Provides an explicit (partial or complete) definition of

T . We will here refer to this as simply definition.
I Exemplification: Providing examples of what the trigger word can

mean, or usually means.
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates II

I To describe the effects of these dialogue acts (once they are
grounded), Larsson and Myrendal (2017) propose an abstract
formalism for conceptual updates

I We assume that a definition D of a word (or expression) T has been
provided, or an example situation E .

I D or E is then used for updating the meaning in question.
I δ(T , D): T updated with D as a partial definition of T
I ε(T , E ): T updated with E as an example of a situation described by

T
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates III

I The abstract meaning update functionsserve as a sort of API between
dialogue acts and their consequent meaning updates.

I We can see the learning from examples described above as part of the
specification of ε(T, E).
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates IV

I While we leave the exact formulation for future work, updating with
an example E in the frequentist learning paradigm amounts to

1. adding example E to J

2. recomputing the conditional probabilities and priors based on the
updated J

3. updating the probabilities and priors in the classifier record.
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates V
I We collect all information about our fruit classifier in FruitR

FruitR=υ(FruitC) [ π(FruitC)) =

cvar = Fruit
cval = fApple, Pearg
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]
g

condps =

 lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]


I This will allow us to update any aspect of the classifier by

manipulating this record
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates VI

I In Larsson et al. (2021), we show how conditional probabilities and
priors are recomputed after adding a new example E to J

I We can store the result of such computations in a record P 0

P 0 =


condps =

 lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]
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Word Meaning Negotiation and semantic updates

Word Meaning Negotiation and semantic updates VII

I Now, step (3) could be formalised thus:

FruitR
0
=FruitR[P

0
]

I Simplifying somewhat, if r1 and r2 are records, then r1[r2] is the union
of r1 and r2 except that if a label ` occurs in both r1 and r2, the value
of ` in r1[r2] will be r2.`.

I For example,

[
a = x
b = y

]
[

[
b = z
c = w

]
]=

 a = x
b = z
c = w


I See Cooper (in prep) for details.
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Learning perceptual meanings from definitions

Learning perceptual meanings from definitions I

I The work reviewed above showed how probabilistic classifiers can be
trained from examples presented in interaction.

I However, this cannot be the whole story.

I Indeed, in terms of the dialogue acts for semantic coordination
presented in Larsson and Myrendal (2017), we have only covered
exemplification.

I What about partial definitions (explicifications)?

I What effect do they have on agent’s takes on meanings, and how is
learning from definitions related to learning from examples?
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Learning perceptual meanings from definitions II

I From the perspective of agents learning how to classify situations
probabilistically, one might ask how agents learn the structure of the
Bayes net (or as a special case, Naive Bayes classifier) used to classify
situations.

I We propose to connect these two questions, by exploring the idea
that the the dependency structure of Bayesian classifiers can be
derived (learned) from definitions, and that one effect of a definition
can be to update the structure of a Bayesian classifier.

I (We are not claiming that this is the only way agents can learn such
structures.)

I In the fruit recognition game, B learns how to take shape (a-shape or
p-shape) and colour (red or green) into account when classifying
apples and pears, by adjusting conditional probabilities and priors.
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Learning a new meaning from example I

I Before going into learning new meanings from definitions, it might be
helpful to show how learning new meanings from examples
(demonstrations) could be accounted for.

I In Larsson and Cooper (2009), it is shown how ontological meaning
(e.g. that pandas are (not) bears) can be learned from interaction,
and how such learning can be modelled in TTR.

I We can imagine a version of the fruit recognition game where new
fruits (i.e., new value types for the fruit variable type) are introduced
by demonstration:

A: What fruit is this?
B: A pear.
A: Wrong, it’s a Wax Jambu.
B: Okay.
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Learning a new meaning from example II

I In this example, B can learn both that Wax Jambus are fruits, and
what they look like based on being provided with an example Wax
Jambu that they can observe.

I From the context, B can figure out that Wax Jambus are fruits.

I In the general case such an inference can be based on a variety of
factors, including the ongoing activity and linguistic evidence.

I In terms of a probabilistic classifier, learning this amounts to adding a
new value (type) to the Fruit variable (type).

I This update can be formalised thus:

FruitR
0
=FruitR[

[
cvals = F .cvals[fCg

]
]

I Furthermore, B could add the new example to J and update the
conditional probabilities, as detailed above.
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Learning a new meaning from example III



cvar = Fruit
cval = fApple, Pearg
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]
g

condps =

 lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]
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Learning a new meaning from example IV



cvar = Fruit
cval = fApple, Pear, WaxJambug
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]
g

condps =


lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .
lbl(WaxJambu) = . . .


priors =

 lbl(Apple) = 0.64
lbl(Pear) = 0.26
lbl(WaxJambu) = . . .
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Learning a new meaning from example V

I Next, we will see how B can instead learn from partial definitions,

I Such definitions do not provide perceptually available evidence...

I ...but do seem to offer help in guiding B’s learning of the structure of
the classifier, as well as associated probabilities.
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Learning a new meaning from definition I

I We can imagine another language game where A asks B to fetch
different fruits in a fruit storage, where several types are fruits are
available, some of them unknown to B:

A: Get me an apple please
B: (fetches apple) there you go
A: Thanks. Now get me a Wax Jambu!
B: A Wax Jambu?
A: They are pear-shaped and red.

I We can call this the fruit fetching game.
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Learning a new meaning from definition II

I Let’s assume that our learning agent B from A’s second utterance
learns that Wax Jambus are fruits.

I However, B has not been presented with an example fruit to use for
training.

I In this sense B does not yet know what Wax Jambus look like.

I It seems plausible that B in this case might be able to use A’s
definition of Wax Jambu to distinguish Wax Jambus from other fruits
(even if this ability will not be as developed as it might later be after
seeing several Wax Jambus).
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Learning a new meaning from definition III

I How, then, could we model the effects of A’s definition, which (with
pronoun resolved) can be paraphrased as “Wax Jambus are
pear-shaped and red”?

I Firstly, by adding a value type WaxJambu to the fruit classifier:

FruitR
0
=FruitR[

[
cvals = FruitR.cvals [ fWaxJambug

]
]
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Learning a new meaning from definition IV

I Secondly, by recomputing probabilities, assigning high values to
p(PshapejjWaxJambu) and p(RedjjWaxJambu), and lowering other
probabilities accordingly.

I For simplicity, we assume here that the high values are 1 and that
conditional probabilities for other values of the same variables are
lowered to 0.

FruitR
00

=FruitR
0
[

condps=

lbl(WaxJambu)=


lbl(Red) = 1.0
lbl(Green) = 0.0
lbl(PShape) = 1.0
lbl(AShape) = 0.0



 ]
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Learning a new meaning from definition V



cvar = Fruit
cval = fApple, Pearg
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]
g

condps =

 lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]
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Learning a new meaning from definition VI

cvar = Fruit
cval = fApple, Pear, WaxJambug
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]
g

condps =



lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .

lbl(WaxJambu) =


lbl(Red) = 1.0
lbl(Green) = 0.0
lbl(PShape) = 1.0
lbl(AShape) = 0.0




priors =

 lbl(Apple) = 0.64
lbl(Pear) = 0.26
lbl(WaxJambu) = . . .
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Learning a new meaning from definition VII

I Hence, the ProbTTR implementation of the δ+(T ,D) function
should be such that δ+([[ Wax Jambu ]],[[ pear-shaped and red ]])
results in these updates.

I Equipped with the updated mental fruit classifier, B now goes off to
fetch a Wax Jambu in a storage room, despite never having seen one.

I One way of finding the right type of fruit in the storage is to simply
going through the fruits in storage one by one and classify them, until
one is classified as the sought type (here, Wax Jambu)2.

2One can imagine a continuation of the game, where B shows the retrieved fruit to A
and receives feedback on whether it was right kind of fruit or not, and trains on this
example in the normal way.
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Learning new evidence values I

I Above, A’s definition only included evidence values that were already
used in the fruit classifier.

I However, A may also introduce a unknown value previously unknown
to B:

A: Get me a Mango please!
B: A Mango?
A: They have an oblong shape.
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Learning new evidence values II

I In this case, B needs to both add the new class value Mango and a
new evidence value Oblong (for the variable Shp):

FruitR
0
=FruitR[

[
cvals = FruitR.cvals [ fMangog

]
]

FruitR
00

=FruitR
0
[

[
evals =

[
lbl(Shp) =FruitR.evals.lbl(Shp)

[ fOblongg

]]
]

I Finally, as before, the conditional probabilities are shifted to favour
the evidence variable given in the definition:

FruitR
000

=FruitR
00

[

condps=

lbl(Mango) =

lbl(PShape) = 0.0
lbl(AShape) = 0.0
lbl(Oblong) = 1.0

 ]
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Learning new evidence values III



cvar = Fruit
cval = fApple, Pearg
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShapeg

]
g

condps =

 lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .


priors =

[
lbl(Apple) = 0.64
lbl(Pear) = 0.26

]



85 / 98



Learning perceptual meanings from definitions Learning new evidence values

Learning new evidence values IV

cvar = Fruit
cval = fApple, Pear, Mangog
evars = fCol,Shpg

evals = f
[

lbl(Col) = fRed,Greeng
lbl(Shp) = fAShape,PShape,Oblongg

]
g

condps =



lbl(Apple) =


lbl(Red) = 0.63
lbl(Green) = 0.37
lbl(AShape) = 0.97
lbl(PShape) = 0.03


lbl(Pear) = . . .

lbl(Mango) =

lbl(PShape) = 0.0
lbl(AShape) = 0.0
lbl(Oblong) = 1.0




priors =

 lbl(Apple) = 0.64
lbl(Pear) = 0.26
lbl(Mango) = . . .
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Learning new evidence values V

I We assume here that B was familiar with the shape value type
Oblong, but had not previously considered it relevant to fruit
classification

I A more complicated situation arises when a previously unknown value
for a known variable is introduced, e.g. a new shape.

I In such cases, perceptually available examples may be necessary to
train the updated classifier on.
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Learning new evidence variables I

I Finally, a definition may introduce a new evidence variable, along with
a value:

A: Get me a Kumqat!
B: A Kumqat?
A: They are small

I We assume that B is already has a Size classifier and knows that
Small is a Size (along with, say, MidSize and Large).
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Learning new evidence variables II

I Given this, the resulting updates to B’s fruit classifier could be
described thus:

FruitR
0
=FruitR[

[
values = FruitR.cvals [ fKumqatg

]
]

FruitR
00

=FruitR‘0[
[
evars = FruitR.evars [ fSizeg

]
]

FruitR
000

=FruitR
00

[
[
evals =

[
lbl(Size) = fLarge,MidSize,Smallg

]]
]

FruitR
0000

=FruitR
000

[

condps=

lbl(Kumqat) =

lbl(Small) = 1.0
lbl(Large) = 0.0
lbl(Midsize) = 0.0

 ]
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Learning new evidence variables III

I This example also raises the question about partial definitions that
only mention a value of one of the evidence variables.

I What should the conditional probabilities for a situation being of the
value types for the other evidence variable types (not mentioned in
the definition) given that the situation is of the new class value type?

I For now, we note that several options are available - assuming
uniform distributions, or asking for more information (“What colour is
a Kumqat? What shape?”) and use the response to infer new
conditional probabilities.
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Definitions vs. examples

Definitions vs. examples I

I If we want to model how meanings are affected by both definitions
and examples, we will need to say something about the trade-off
between definitions and examples.

I For example, while a definition may be useful until examples have
been observed, at some point the observed examples may override a
definition.

I In the proposed account, definitions affect conditional probabilities
only in the short run.
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Definitions vs. examples

Definitions vs. examples II

I Assuming conditional probabilities are recomputed when receiving
new relevant observations, the probabilities resulting from proposed
definitions (e.g. in the fruit fetching game) will be overwritten as
soon as an observation of an instance of the defined concept has been
made (an actual fruit of the defined type has been observed).

I This is perhaps not obviously wrong – it is at least theoretically
possible that definitions are categorically superseded by observations –
but a more flexible trade-off between definitions and examples
(observations) would probably be desirable.
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Definitions vs. examples III

I There are ways of achieving this in the frequentist approach, e.g. by
letting a definition lead to adding some relatively high number N of
“fake” observations in line with the definition to J.

I By manipulation of N, the relative importance of definitions relative
to observations can be regulated.

I If such approaches are deemed unsatisfying for theoretical or empirical
reasons, it may be necessary to move to a different learning method.

I Future work thus includes working out alternative learning approaches
that can better account for the trade-off between definitions and
examples (see forthcoming talk at CLASP ReInAct workshop!)
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Conclusions & future work

Conclusion

I We have shown how (partial) definitions offered in word meaning
negotiations can help learners structure probabilistic classifiers that
are used to compute probabilistic semantic judgements.

I Technically, this was achieved by encoding a Naive Bayes classifier as
a TTR record structure which can updated by definitions.
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Conclusions & future work

Future work

I Parsing natural language into an appropriate representation for
updating classifiers

I Formulating a general update rule for carrying out such updates (of
which several examples were given above)

I Generalising the account to Bayes nets (and other types of
probabilistic classifiers)

I We also want to study actual definitions from human-human
dialogues, rather than invented ones.
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